
The KEBN Process: A new approach to
Knowledge Engineering with Bayesian Nets

Andre Oboler
School of CSSE, Monash University

andre@csse.monash.edu.au

Abstract

Traditional and Object Oriented approaches to software development have models for the develop-
ment life cycle of large software systems. Even when not followed in detail, life cycle models provide
useful guidance to a complex task. The development of large scale Bayesian nets differs from other
types of software development. These differences are a result of the Knowledge Engineering pro-
cess needed for Bayesian Net development. Hence the lack of a software development approach
that allows for Knowledge Engineering has had a significant impact on the uptake of Bayesian net
technology.
This paper discusses some Knowledge Engineering approaches for Bayesian nets and presents the
KEBN life cycle development model which accommodates the use of Knowledge Engineering and is
specific to the domain of large scale Bayesian net development. The KEBN approach is compared
to other traditional life cycle models and shown to be more compatible with large scale Bayesian
net development.

1 Introduction

Bayesian nets have become one of the most pop-
ular and successful methods for artificial intel-
ligence reasoning under uncertainty (Nikovski,
2000; Charniak, 1991). The networks are rep-
resented as directed acyclic graphs with con-
ditional probability distributions in the nodes.
They are also known as belief networks, causal
networks, probabilistic networks and knowledge
engineering maps (Charniak, 1991). Bayesian
nets can be used for prediction, diagnosis, con-
trol, explanation, sensitivity analysis and calcu-
lating informational value. They are a clear and
adjustable model of a system.

Knowledge Engineering is the acquisition, struc-
turing and refinement of knowledge. The goal
of knowledge engineering is to make informa-
tion accessible to people or computer systems

(Davidson, 1997). In the Bayesian net con-
text, Knowledge Engineering is initially the ac-
quisition of causal relationships and conditional
probabilities from existing data and domain ex-
perts. Once established, Bayesian nets become
the storage mechanism and structure for the
knowledge. In all its uses, the Bayesian net
either provides expert knowledge or uses that
knowledge for expert quality system control.

Traditionally Bayesian networks have been lim-
ited in use due to their computational complex-
ity. This has fueled research into more efficient
algorithms. In recent times Bayesian net en-
gines and computational power have both im-
proved substantially. Bayesian nets are now
in use in commercial and defense applications
(Laskey and Mahoney, 2000; Haddawy, 1999;
Charniak, 1991; Musman and Plehner, n.d.).
The complexity of large Bayesian net systems

1

makes them difficulty to understand, build and
maintain.

Users of Bayesian nets are struggling for a
method to build and more accurately param-
eterise their software (Laskey and Mahoney,
2000; CoIL, 2000). Some leading researchers
in the field have breifly refered to the area
of knowledge engineering (Pearl, 1988; Hecker-
man, 1991; Jensen, 1996), but no methodology
for the creation of large scale Bayesian nets has
yet emerged. At present little research has been
conducted in this area. Researchers still largely
focused on algorithms (CoIL, 2000; Laskey and
Mahoney, 2000). A software development ap-
proach that embraces Knowledge Engineering
is greatly needed. One such approach is KEBN,
Knowledge Engineering with Bayesian Nets.

We begin this paper with an introduction to
Bayesian Nets in section 2. A brief overview
of d-separation is given, this will be returned to
later in the paper. Section 2 ends with possi-
ble uses for AI methods such as Bayesian nets.
Knowledge Engineering is discussed in section 3.
We consider issues related to expert solicitation
and automated Bayesian learning with causal
discovery algorithms. We consider factors in
combining expert opinion and automated learn-
ing in a way that benefits both. The KEBN ap-
proach is introduced in section 4 and its various
phases are explained. KEBN is then compared
to existing lifecycle models, including the water-
fall, spiral and prototyping approaches, which
emphasises the suitability of KEBN and an ap-
proach centered on knowledge engineering.

2 Bayesian Nets

A Bayesian net is a DAG (directed acyclic
graph) where meaning is given to both the
nodes and the arcs between them. The nodes
represent random variables. The arc typically
represents a causal relationship in the direction

of the arrow. The lack of an arc represents the
absence of a direct dependency between vari-
ables. This can be seen in Figure 1.

Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(Burglary)

0.001

P(Earthquake)

0.002

B E P(Alarm)

 T T 0.95

 T F 0.94

 F F 0.29
 F T 0.001

A P(JohnCalls)

T 0.90
F 0.05

A P(MaryCalls)

T 0.70
F 0.01

A is the Alarm, B is Burglary, E is Earthquake,
T is true, F is false

Figure 1: A simple alarm network. Adapted
from Russell and Norvig, 1995

Figure 1 can be interpreted as: Burglary and
Earthquake both have some probability, as
given in the CPT (conditional probability table)
for causing the alarm to sound. The alarm has
some probability of causing either one or both
of JohnCalls and MaryCalls. Note the mean-
ing of the absence of an arc, the network mod-
els John and Mary calling based only on the
alarm, they have no direct knowledge of Earth-
quake nor Burglary. Further knowledge from
John and Mary such as noticing a tremor or
seeing someone at the house, would require ad-
ditional arcs to this network.

Independence and d-separation are key factors
in fast Bayesian net update algorithms. D-
separation may also be of useful in Knowledge
Engineering, as discussed later in this paper.
The three types of local structures found in a
Bayesian net are shown in figure 2, the fourth

2

A B

X

Y

Z

X

Y

Z

C

X

Y

Z

Figure 2: Types of directed connections for the
undirected graph x-y-z

type is the absence of a arc. The structures in
figure 2 are: a linear relationship (a), a converg-
ing one (b) and a diverging one (c).

Looking back at the alarm network we see both
converging and diverging behavior. Consider
the observation made above. Given the state
of alarm, MaryCalls and JohnCalls provide no
new information. This is a result of divergent
behavior when the evidence (known or observed
value) is the root. We can also see that conver-
gent behavior tells us nothing if we know the
value of the child node. i.e. given the alarm
went off, learning there was an earth quake or
burglary has no further effect on the probability
that Mary or John will call. A linear relation-
ship, like a, where the middle value is known,
will behave in a similar fashion. These rela-
tionships segregate the network, given a known
value in position Y. This property is called d-
separation (Pearl, 1988).

2.1 Uses

While Bayesian Nets are only one of a num-
ber of approaches to data mining and decision
support, they are one of the more versatile and
weasily understood. Other approaches include:
standard statistics, artificial neural nets, sup-
port vector machines, evolutionary and genetic
algorithms, and decision trees (CoIL, 2000).
The following tasks can be aided with one or

more forms of decision support tools.A Bayesian
Net can be used for any of them, and once con-
structed, can be reused for different tasks as
needed.

2.1.1 Decision making

A Bayesian net can work out the optimal strat-
egy for tackling some problem. A strategy is
a list of decisions and which choices to take
at each point. Optimal is the strategy that,
on average, balances highest return (in money
or utility value) and lowest risk. The optimal
strategy may be tuned to return the maximum
expected value (in the long run) or to be risk
averse (favoring safer choices) like most people
(Raiffa, 1968).

2.1.2 Forward Prediction

Given probability distributions of causes, a
Bayesian net can calculate the probability of
an effect occurring. For example the proba-
bility of a person developing asbestos poison-
ing given the parent probabilities such as gen-
eral health, proximity to asbestos and dura-
tion of time in proximity to asbestos are given.
Prediction gives the effect, given the cause
(Nikovski, 2000).

2.1.3 Diagnosis

Given an effect, a Bayesian net can identify
the most likely cause. For example, the likely
cause of a plane crash may be calculated with a
Bayesian net from the prior probability of fail-
ure of various components (including the pi-
lot) and known facts about the plane crash.
One of the most common uses of Bayesian nets
is for medical diagnosis. The PATHFINDER
project, later developed into a commercial prod-
uct called INTELLIPATH is used at several

3

hundred medical sites (Heckerman, Horvitz,
and Nathwani, 1992; Lam and Segre, 2002).

2.1.4 Control

Bayesian nets can be used for control using a
combination of forward prediction (to work out
the probability of an event occurring) and de-
cision making (in order to work out the best
course of action to achieve or avoid that result).
In a control situation there is a feedback loop
between the actions of the system and the re-
sulting incoming data. The loop allows the net
to adjust its beliefs and if needed adapt its strat-
egy. Bayesian systems based on this principle
have been developed for automation tasks as
serious as the defense of American navy ships
(Musman and Plehner, n.d.).

2.1.5 Explanation

Where a number of possible contributing causes
exist, a Bayesian net can be used to calculate
the most likely cause and the contribution of
various causes. An adaptation of this is im-
age classification as shown by a US Navy solu-
tion to the ship classification problem (Musman,
Chang and Booker, 1993).

2.1.6 Sensitivity Analysis

A Bayesian net can be used to experimentally
work out acceptable ranges for controllable vari-
ables. For example the effectiveness of hospital
workers if their shifts are made slightly longer or
shorter. The staff may be unaffected by changes
under a certain size, or may drastically improve
their effectiveness with a small reduction, while
further reduction beyond that may have no ef-
fect. Sensitivity analysis allows the parameters
to be unaltered until a change is observed.

2.1.7 Informational value

Like sensitivity analysis, information value may
be worked out by trial and error adoption of
the Bayesian net. Precision is a change in the
degree of measurement. A lower degree of preci-
sion is easier and often cheaper to measure and
maintain. In manufacturing and medical work
it can lead to significant savings.

3 Knowledge Engineering

Knowledge Engineering is used both in the de-
velopment and daily use of large scale Bayesian
networks. Initially it is used to collect data and
build the Bayesian network. Later the Bayesian
network is used as a tool to store and obtain
knowledge. The initial problem of building the
Bayesian network is addressed first. Both ex-
pert knowledge solicitation and Bayesian learn-
ing by way of causal discovery algorithms will
be discussed. We will then discuss combining
the approaches. In the context of the com-
bined approaches we consider methods to aid in
obtaining knowledge from a Bayesian network.
Though not specifically addressed the daily use
of the Bayesian net may also benefit from the
approach to combined discovery.

3.1 Knowledge Elicitation

Knowledge elicitation is the process of codify-
ing the knowledge and decision making ”rules”
of human experts. Unlike rule based expert
systems, real experts seldom make hard and
fast decisions. The use of probability in a
Bayesian net takes account of this uncertainty
while causal relationships model the experts
logic. The difficulty is firstly in obtaining the
structure of the network and secondly in pa-
rameterising it.

4

The initial step in creating the structure of the
Bayesian net is identifying the key domain vari-
ables (Druzdzel and Van der Gaag, 2000; Rus-
sell and Norvig, 1995). The next step is solic-
iting the causal relationship between variables.
It may be done in one step with the expert pro-
viding a causal map, or multiple steps involv-
ing obtaining and ordering initially undirected
arcs. Either way, it may require “significant ef-
fort” (Druzdzel and Van der Gaag, 2000). One
approach to this problem is to pick only the
those variables effecting (in the expert’s opin-
ion) the core of the problem. A Bayesian net
development from a limited set may perform
significantly worse than the expert when com-
plications arise, but it is a good start for fur-
ther development (Laskey and Mahoney, 2000).
Once the basic system has been built, additional
nodes and arc can be added as they are recog-
nised or refinement is required.

Parameterising the network involves probability
elicitation. Literature in this area dates back to
the 1970s, and much of it is now dated (Laskey
and Mahoney, 2000). An expert’s knowledge
is hard to access. Sometimes it contains signifi-
cant inconsistencies that they may not be aware
of, or not willing to acknowledge (Monti and
Carenini, 2000). Some approaches have been
developed to more accurately solicit probability.
An early approach involves the use of “bets”.
In the betting or lottery method, the expert is
asked to wager for or against a proposition. The
cost of winning and losing are adjusted until
the expert is indifferent to the choices offered.
A version of the lottery method invovles two
lotteries each having a major and consolation
prize. The first lottery is based on an event
X actually occurring. The second is based on
X occurring with probability p. The expert is
asked to choose which lottery they prefer. The
value of p is adjusted until they are indifferent
to which lottery they participate in (Keeney and

Raiffa, 1976). Another method is an analyti-
cal hierarchy process, a ranking solicitation pro-
cess adapted to probability solicitation (Monti
and Carenini, 2000). Methods for more accu-
rate probability solicitation are still being in-
vestigated.

3.2 Bayesian net learning algorithms

Causal discovery algorithms such as CaMML
(Causal discovery using MML) (Wallace and
Korb, 1999) exist and can create likely models
from samples of collected data. CaMML works
by sampling possible models. Gibbs sampling
(Geman and Geman, 1984) with an MML esti-
mators (Wallace and Korb, 1999) is used.

One problem with learning algorithms is the in-
corporation of new with old data. This can be
dealt with using a time decay function for the
influence of data (Kennett, Korb and Nichol-
son, 2001). Another problem is that data may
hold bias that adversely effects the network con-
structions (Druzdzel and Van der Gaag, 2000).
It may be hard to spot bias in the data. The
CaMML system has been tested against a rule
based systems created from expert solicitation.
Without human intervention the models it pro-
duced consistently gave better predictions than
the expert system (Kennett et al., 2001). This
gives some hope that bias in the data may be
less than the experts own bias.

3.3 Combined Approaches

We begin this section with a word of caution.
Combining information from different sources
can be risky. In the worst case it can lead to sig-
nificantly worse results than either method used
on its own (Druzdzel and Van der Gaag, 2000).
The worst case occurs when the sources used
have differing assumptions about the causal
structure (Druzdel and Diez, 2000). If different

5

sources do not consider and adapt to each oth-
ers views they may present incompatible results.
While learning algorithms can be forced to take
account of an expert’s view, for best results the
expert must also be willing to reconsider their
ideas in light of the models “discovered” struc-
ture. This requires a clear understanding of the
systems model by the domain expert.

One method of integrating expert knowledge
with CaMML is to allow the expert to set prior
probabilities on as many possible arcs as they
wish. This has been implemented in a version
of CaMML (O’Donnell, 2001). The MML scor-
ing metric used in CaMML will reward mod-
els that match the experts opinion and punish
those that disagree.

Ideally though, the expert should be able read
and interpret the causal model. The experts
knowledge should change and grow with the sys-
tems. The CoIL (Computational Intelligence
and Learning Cluster) Network, an EU spon-
sored network of excellence, ran a data mining
competition in 2000. Forty three groups from
around the world, from both academic and in-
dustry, submitted a solution. CoIL organisers
found that, “typical problems [with the solu-
tion approaches] are the focus on algorithms
instead of methodologies and the lack of tools
and efforts to explain the discovered patterns”
(CoIL, 2000). As Peter van der Putten, one
of the CoIL competition organisers observed, in
real world situations prediction only models are
not accepted by users. They do not contribute
to the growth of knowledge about the problem
(CoIL, 2000).

One useful abstraction in a Bayesian net is the
grouping of d-connected parts of the network.
This allows changes to the evidence to show up
clearly as different parts of the net become d-
separated and split themselves off from other
groups. The property of d-separation is already

used to optimise Bayesian net engine perfor-
mance, as discussed earlier int his paper. It im-
proved update times by limiting the amount of
information the engine needs to process. In the
same way is could reduce the complexity that
domain expert needs to handle at any one time.

At the more local level, an equivalent of Boolean
logic gates has been shown to prevent over fit-
ting. For example, in a medical diagnosis,
symptom ‘A’ (of which there are a number of
types) can provide supporting evidence of dis-
ease ‘MI’ but on their own a number of ‘A”s
could lead to over confidence in a diagnosis of
‘MI’. If the relationship is not just causal but
mathematically logical, an “or” condition may
be used to ignore repeated ‘A’ events. Nikovski,
who suggests this, introduces an extra node to
act as the gate (Nikovski, 2000). Rather than an
extra node, adding to the complexity the human
user must deal with, we suggest the entire gate
structure could be modelled as a single (special)
”node” on the network. This logic node could
take many inputs and give 1 or more outputs,
but instead of containing a conditional proba-
bility table, it would contain an appropriately
structured sub-net. The sub-net could be hid-
den or expanded out at any time with no loss
of information. This is shown in Figure 3). A
similar construct (with the name ALL) could be
used for AND. The names ALL and ANY have
been chosen to convey meaning to the domain
expert.

The idea of collapsible components relates back
to structured analysis and would be familiar to
many from techniques such as data flow dia-
grams (DeMarco, 1979).

Knowledge Engineering can be extended to a
mutual learning process for both the network
and the expert. Some considerations when tak-
ing this approach include:

• Ability to collect information about the
world from various sources

6

• Ability to incorporate this information into
the network’s model of the world

• Visibility of the impact new information
has on the model’s structure, paramater-
isation and performance

• The ability for the model to be understood
by domain experts in the field being mod-
eled.

CA

MI

ST SB AFB AFL JR STD

From Nikovski, 2000

MI

STD
CA

ANY

Simplified net

Figure 3: A full and simplified OR (ANY) com-
ponent

Knowledge Engineering is a key part of large
scale Bayesian nets development. It must be in-
corporated into any development methodology
applied to Bayesian nets.

4 The KEBN Life Cycle

The KEBN life cycle (Korb, 2002), allows for
the initial development of a network, followed
by a number of phases (possibly repeated) lead-
ing to a Bayesian network in industrial use, and
undergoing regular refinements. The KEBN
lifecycle model is displayed in Figure 4.

In this model the refinement phase replaces the
more typical maintenance phase, during which
network parameterisation can be further refined
(Monti and Carenini, 2000). Alternatively the
scope of the system may be further extended

Design

Validate

Field Test

Industrial Use

Refinement

Figure 4: KEBN Lifecycle

(Laskey and Mahoney, 2000). In both cases the
further development occurs as a refinement of
the existing system rather than as a complete
system rewrite.

In addition to changes to the network, the re-
finement process may improve the domain ex-
perts understanding of the problem. The re-
finement process may need to occur over an ex-
tended period of time. There may be a delay
in obtaining sufficient new data and as Monti
and Carenini (2001), discovered, experts do not
adapt well to sudden change. The knowledge
that their prior beliefs and reasoning are incon-
sistent with themselves may be poorly recieved.

KEBN is explained in more detail below, and
then compared to a number of other develop-
ment life cycles.

4.1 KEBN in detail

KEBN is specifically designed for the needs of
Bayesian net construction. Its strength when

7

applied to Bayesian nets may be a disadvan-
tage for other development methods for reason-
ing under uncertainty. The tasks in KEBN are
described below.

4.1.1 Design

In this first phase the structure of the net-
work is defined. As discussed in the Knowl-
edge Engineering section, this can be done
using expert elicitation methods (Monti and
Carenini, 2000; Wang and Druzdzel, 2000) or
by running causal discovery algorithms such as
CaMML (Wallace and Korb, 1999) on collected
data.

4.1.2 Validation

This step involves sensitivity analysis and accu-
racy testing. Sensitivity analysis can be critical
in many commercial settings. Precision of mea-
surement comes at a cost. Accuracy is impor-
tant.

4.1.3 Field Testing

Alpha and beta testing of the networks pro-
vide feedback and an opportunity to find and
fix problems. They provide a chance to test
the application against the real world before its
advice is trusted. If changes fail the field test,
they return to the validation testing stage and
are “checked” disgaurded. When the network is
first being built, a field test failure may result
in the network being redesigned from scratch.

4.1.4 Industrial Use

The product is used in industry and statistics
are collected to allow for further refinement.
The net is not modified until a refinement phase
is started. The refinement phase as shown in

Figure 4 does not lead directly back to indus-
trial use, and validation and field testing must
take place for the updated net is used.

4.1.5 Refinement

The network may be updated and refined to bet-
ter fit its past data and correct for sub-optimal
decisions. Small changes to parameterisation
may be carried out and regression testing con-
ducted. The network structure may also be ex-
tended to cope with more general situations. A
change to structure will result in a need to reval-
idate and field test. If the validation and field
testing is successful, the new structure may be
used for a while before entering another refine-
ment phase.

4.2 KEBN and the Fountain

The KEBN software development life cycle
(SDLC) bares some resemblance to the foun-
tain SDLC as presented by Henderson-Sellers
and Edwards (1990) and shown in Figure 5.

Both are processes that allow new domain
knowledge and expertise to cause a re-
evaluation or redesign. KEBN combines anal-
ysis, conceptual design, component design and
coding into one larger design phase. The KEBN
validation phase can be seen as a form of unit
testing. Field testing can be seen as whole sys-
tem testing.

The strongest resemblance can be seen at the
top of the KEBN method and fountain model.
Both program use and industrial use lead on
to an evolution / refinement phase. Despite all
this, there are some important differences.

Decision support with Bayesian Nets should not
require extensive coding. The design phase, de-
scribed later in this section, is a combination
of problem analysis and the development of a
conceptual model. The methods of developing

8

Figure 5: Fountain Lifecycle

this model are themselves a key part of KEBN
and very different from the waterfall’s concep-
tual and component design.

The models from the KEBN design phase may
themselves be compiled. Validation can be a
comparison against sample data and more often
than not will lead to design changed. Field test-
ing is the final fall back before a Bayesian Net
based application is accepted for industrial use.
A number of problems, such as over fitting, may
be picked up at this stage. While both life cy-
cles show a willingness to fall backwards, KEBN
in practice makes more use of this and adopts a
more prototype-like approach.

4.3 KEBN and the Prototype

KEBN differs from the classical prototyping
approach and adds rigor to the flow between
updating the prototype’s ideas, implementing
them and using them. This can be seen in

KEBN’s insistence that refinements flow back
at least as far as validation rather than being
immediately incorporated into a field test or in-
dustrial use. The classic prototyping methodol-
ogy stops with the conversion to an operational
system (as shown in Figure 6). KEBN acknowl-
edges that as our knowledge of the state of the
world changes, partly as a result of industrial
use, the need for further refinement of the in-
dustrial model becomes more evident. This is
particularly relevant for Bayesian nets in indus-
trial applications given the mutual growth in
understanding of both the net and the expert,
as previously discussed. In KEBN unlike pro-
totyping, there is no final conversion that ends
the process of refinement.

Identify Problem Develop Prototype

Implement and use protype Revise and enhance protype

Convert to Operational System

Figure 6: Prototyping Method

4.4 KEBN and the Spiral

KEBN shares the project initiation and conclu-
sions phases of the spiral model, namely that a
new iteration can start at any time when a hy-
pothesis is put forward that the system’s model
could be improved. The KEBN cycle, by drop-
ping back to the evaluation phase, then reviews
whether this change might indeed improve the
system. This is similar to the spiral that is initi-
ated with a hypothesis for system improvement
and then “involves a test of this hypothesis”

9

(Boehm, 1988). The difference is a matter of
degree.

KEBN is a local development process for a sys-
tem, a set of characteristics that are slowly be-
ing modelled closer to the reality. The possible
changes are very limited and must be restricted
to changes to the network structure or parame-
terisation. The flows back to design show a re-
development of the network from scratch, most
likely due to a change in the world rather than
to an incremental improvement in knowledge.

The risk mitigation phase that looks at various
possible technology approaches and implemen-
tation methods (the key element of the spiral)
may in KEBN be non existent after the initial
decision to use a Bayesian net is made. While
a change to network structure may either im-
prove the system or not, the validation and later
field-testing of the change are now critical and
must be extensively tested. In their paper “Net-
work Engineering for Agile Belief Network Mod-
els” Laskey and Mahoney note the importance
of “iterative refinement and enhancement of a
prototype model” (Laskey and Mahoney, 2000).
They propose starting with the core system and
then expanding it to cope with more variables
and less stringent assumptions as it is refined.
While they praise the spiral method for mak-
ing this possible, the internals of the spiral are
largely ignored. They assess risk only at the
start and in terms of which parts of the network
may be expand or refined.

There is no other opportunity for risk assess-
ment in the case of extending a Bayesian model.
The method of expansion and technology is pre-
determined. It is this method and technology
application that usually carries the varying de-
grees of risk for the different possibly implemen-
tations considered in a spiral development life
cycle. Laskey and Mahoney come up with a sys-
tem improvement, a hypothesis and then adapt-
ing the system to take account of it (by adding

more nodes) before attempting to validate it.
This approach fits much better to KEBN than
to the spiral model, however at the meta level
(that is between spirals) the two approaches
may look the same.

5 Conclusions

In order for Bayesian nets to be better accepted
and more widely used in industry, a method-
ology for developing large scale Bayesian nets
is needed. Knowledge Engineering should fo-
cus on expert solicitation, Bayesian net learn-
ers, and the potentially positive interaction be-
tween them. The whole must be developed into
a framework which allows both growth of the
networks understanding and growth of domain
experts understanding. This can be achieved by
continual refinement of the system’s structure
and parameterisation. Increased understanding
by experts and changes to the data that influ-
ences Bayesian net learners can fuel such re-
finement. The KEBN methodology along with
various related ideas about capturing data for
parameterisation and network abstraction may
provide the start of such a solution.

6 Acknowledgments

We thank Kevin Korb for critiquing drafts of
this manuscript and acknowledge his original
KEBN design which formed the basis of this
new adapted KEBN design.

References

Boehm, B. (1988). A spiral model of soft-
ware development and enhancement, IEEE
Computer 21: 61–72.

10

Charniak, E. (1991). Bayesian networks without
tears, AI Magazine 12: 50–63.

CoIL (2000). Lessons about self-learning, Web-
site of the Computational Intelligence and
Learning Cluster network of excellence.
Web page updated 17 of October, 2000.
*http://www.dcs.napier.ac.uk/
coil/news/feature49.html

Davidson, L. (1997). Knowledge Extrac-
tion Technology for Terminology, Masters,
School of Translation and Interpretation,
University of Ottawa.

DeMarco, T. (1979). Structured Analysis and
Systems Specification, Prentice-Hall.

Druzdel, M. and Diez, F. (2000). Criteria for
combining kowledge from different sources
in probabalistic models, Working notes for
the workshop ‘Fusion of Domain Knowl-
edge with Data for Decision Support’ 16th
Annual conference on Uncertainty in Arti-
ficial Intelligence, Stanford, CA, pp. 23–29.

Druzdzel, M. and Van der Gaag, L. (2000).
Building probabilistic networks: “where do
the numbers come from?” guest editors’
introduction, Knowledge and Data Engi-
neering, IEEE Transactions on 12: 481–
486.

Geman, S. and Geman, D. (1984). Stochas-
tic relaxation, gibbs distributions, and the
bayesian restoration of images, I.E.E.E.
Transactions Pattern Analysis and Ma-
chine Intelligence pp. 721–741.

Haddawy, P. (1999). An overview of some re-
cent developments in bayesian problem-
solving techniques, Artificial Intelligence
Magazine 20: 11–19.

Heckerman, D. (1991). Probabilistic Similar-
ity Networks, MIT Press, Cambridge, MA,
USA.

Heckerman, D., Horvitz, E., and Nathwani, B.
(1992). Towards normative expert systems:
Part i, the pathfinder project, Methods of
Information in Medicine pp. 90–105.

Henderson-Sellers, B. and Edwards, J. (1990).
The object-oriented systems life cycle,
Communication of ACM 33: 71–79.

Jensen, F. (1996). An Introduction to Bayesian
Networks, New York: Springer Verlag.

Keeney, R. and Raiffa, H. (1976). Decisions with
multiple objectives, Wiley, NY.

Kennett, R., Korb, K. and Nicholson, A. (2001).
Seabreeze prediction using bayesian net-
works, Proc. of the 4th Pacific-Asia Conf.
on Knowledge Discovery and Data Mining,
Hong Kong, pp. 148–153.

Korb, K. (2002). Kebn, Website of CSE459.
Web page viewed 26 October 2002.
*http://www.csse.monash.edu.au/ korb/
subjects/cse459/Lectures/L3/L3-4.ps.gz

Lam, W. and Segre, A. (2002). A distributed
learning algorithm for bayesian inference
networks, Knowledge and Data Engineer-
ing, IEEE Transactions on 14: 93–105.

Laskey, K. and Mahoney, S. (2000). Network en-
gineering for agile belief network models,
Knowledge and Data Engineering, IEEE
Transactions on 12: 487–498.

Monti, S. and Carenini, G. (2000). Dealing with
the expert inconsistency in probability elic-
itation, Knowledge and Data Engineering,
IEEE Transactions on 12: 499–508.

Musman, S., Chang, L. and Booker, L. (1993).
Application of a real-time control strategy
for bayesian belief networks to ship clas-
sification, International Journal for Pat-
tern Recognition and Artificial Intelligence
7: 513–526.

11

Musman, S. and Plehner, P. (n.d.). Real-
time scheduling under uncertainty for
ship self defense. submitted, avail-
able at http://imsidc.com/ musman/
personal/RT-Sched.ps.

Nikovski, D. (2000). Constructing bayesian
networks for medical diagnosis from in-
complete and partially correct statistics,
Knowledge and Data Engineering, IEEE
Transactions on 12: 509–516.

O’Donnell, R. (2001). Adaptation in Bayesian
Networks, Honours, School of Computer
Science and Software Engineering, Monash
University.

Pearl, J. (1988). Probabilistic Reasoning in In-
telligent Systems: Networks of Plausible
Inference, Morgan Kaufmann.

Raiffa, H. (1968). Decision Analysis, Addison-
Wesley.

Russell, S. and Norvig, P. (1995). Artificial
Intelligence a Modern Approach, Prentice
Hall.

Wallace, C. S. and Korb, K. B. (1999). Learn-
ing linear causal models by MML sam-
pling, in A. Gammerman (ed.), Causal
Models and Intelligent Data Management,
Springer-Verlag.

Wang, H. and Druzdzel, M. J. (2000). User
interface tools for navigation in conditional
probability tables and elicitation of proba-
bilities in bayesian networks, Proceedings
of the Sixteenth Annual Conference on
Uncertainty in Artificial Intelligence
(UAI-2000), Vol. 14, Morgan Kaufmann
Publishers, Los Angeles, pp. 617–625.
*http://www.pitt.edu/ druzdzel/ ab-
stracts/uai00c.html

12

